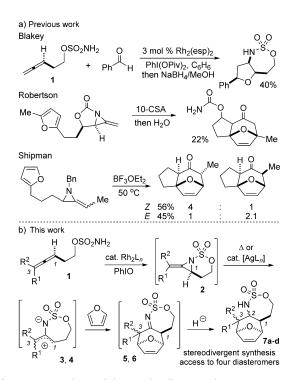


Cycloaddition

Deutsche Ausgabe: DOI: 10.1002/ange.201606195 Internationale Ausgabe: DOI: 10.1002/anie.201606195

Stereocontrolled Syntheses of Seven-Membered Carbocycles by Tandem Allene Aziridination/[4+3] Reaction

Nels C. Gerstner, Christopher S. Adams, Maik Tretbar, and Jennifer M. Schomaker*


Abstract: A tandem allene aziridination/[4+3]/reduction sequence converts simple homoallenic sulfamates into densely functionalized aminated cycloheptenes, where the relative stereochemistry at five contiguous asymmetric centers can be controlled through the choice of the solvent and the reductant. The products resulting from this chemistry can be readily transformed into complex molecular scaffolds which contain up to seven contiguous stereocenters.

Densely functionalized seven-membered rings are valuable synthetic targets occurring in a range of bioactive natural products and their analogues (Figure 1). Several approaches

Figure 1. Bioactive natural products with seven-membered carbocyclic cores.

to address the challenge of controlling the stereochemical outcome in the synthesis of seven-membered rings have been developed, including annulations, ring-closing metatheses, and an array of cycloaddition reactions.^[1] One powerful strategy involves the [4+3] reaction of a 1,3-diene with a suitable three-carbon coupling partner, analogous to the venerable Diels–Alder reaction, with the potential to form multiple new stereocenters in a highly controlled fashion.^[2,3]

Oxyallyl cations are popular coupling partners in [4+3] cycloadditions. However, use of their nitrogen counterparts is far less common. Reactive 2-amidoallyl cations for reported intramolecular [4+3] reactions have been generated from α -chloroenamines, α -chloroimines, allenes, and methylene aziridines (Scheme 1 a). [3-5] Typically, nitrogen is not retained in the product and the stereochemical outcome is dictated by the nature of the substrate. With these limitations in mind, we wanted to develop an intermolecular, stereodivergent [4+3]

Scheme 1. Stereochemical diversity by allene aziridination. $esp = \alpha, \alpha, \alpha', \alpha'$ -tetramethyl-1,3-benzenedipropionic acid.

cycloaddition protocol with the ability to rapidly increase molecular complexity from simple allene precursors.

Our group has reported a suite of highly chemo-, regio-, and stereoselective oxidative aminations which transform allenes into a diverse array of amine stereotriads with control over both the identity and relative stereochemistry of the three heteroatoms at C1-C3.^[6] We envisaged extending this concept to controlling the relative stereochemistry at each of the three original allene carbon atoms in the synthesis of aminated cycloheptenes through a tandem aziridination/ [4+3]/reduction sequence (Scheme 1b). This strategy features: 1) a one-pot allene aziridination/ring opening of the C-N bond of 2 to yield a 2-amidoallyl cation (3 and 4), 2) intermolecular trapping with inexpensive furan, where the reaction conditions control the relative stereochemistry at C1 and C3 in 5 and 6, and 3) reagent-controlled reduction of the imine to yield stereodivergent syntheses of all four stereoisomers of 7 containing functionality for further elaboration into useful building blocks.^[7]

Initial efforts to convert **8** into the imines **12** and **13** through the intermediacy of **10** and **11** (Table 1) showed a 1:1 THF/furan mixture successfully transformed **9** into the *endo* [4+3] adduct **12** at room temperature (entry 2). The *syn* C1-

^[*] N. C. Gerstner, C. S. Adams, Dr. M. Tretbar, Prof. J. M. Schomaker Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue, Madison, WI 53706 (USA) E-mail: schomakerj@chem.wisc.edu

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under http://dx.doi.org/10. 1002/anie.201606195.

Table 1: Solvent screen for the formal [4+3] cycloaddition.

Entry	Cosolvent	Yield [%] ^[a,b] (24 h, RT)	12/13	Yield [%] ^[b] (24 h, 50°C)	12/13
1	none	0	_	_	_
2	THF	35	> 20:1	31	>10:1
3	MeCN	0	_	21	~1:3
4	$MeNO_2^{[c]}$	0	_	31	< 1:10
5	CF ₃ CH ₂ OH	0	-	26	< 1:10

[a] Reactions at room temperature performed in sealed vials. [b] Yields and d.r. values determined by ¹H NMR spectroscopy with an internal trimethoxybenzene standard. [c] When run at $65\,^{\circ}\text{C}$ for 7 h, the yield was 45% with about a 1:6 ratio of 12/13. THF = tetrahydrofuran.

C3 relationship was established by X-ray crystallography (see the Supporting Information). Reactions in polar aprotic solvents, such as MeCN and MeNO₂ (entries 3 and 4) did not occur at room temperature, but heating to 50°C resulted in *endo* cyclization to furnish **13** with a 1,3-anti relationship. The yield of 13 was increased to 45% over two steps by heating in MeNO₂ at 65°C, albeit with a slightly lower d.r. value.

The differing stereochemical outcomes in 12 and 13 obtained by using THF and MeNO2 were intriguing, and control experiments showed neither product epimerized under the reaction conditions. Shimizu^[8] noted solvent effects on the d.r. value of [4+3] cycloadditions of 2-oxyallyl cations. In contrast to our results, MeNO₂ favored 1,3-syn products with a typical d.r. value of 2:1, while THF/Et₂O favored the 1,3-anti products, also with a low d.r. value. [8] We hypothesize that under our reaction conditions, 12 results from rapid addition of furan to 11, while THF permits equilibration of the cation 11 to 10 to relieve the A^{1,3} strain, thus resulting in the syn product 12. This strain relief could occur through rapid reversible addition of the ethereal oxygen atom to the allyl cation, thus permitting bond rotation and equilibration to 11 before addition of furan takes place.

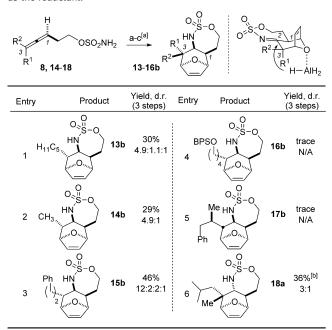
The scope of the thermal [4+3] cycloaddition in MeNO₂ was explored first (Table 2). The intermediate imines were reduced using NaBH₃CN, thus resulting in attack on the imine through a pseudo-axial trajectory. The allenes 8 and 14–16, with monosubstitution at C3 (entries 1-4), delivered 13a-16a with moderate to good d.r. values. The additional stereocenter α to C3 in 17 (entry 5) exerted an influence on the d.r. value of 17a, thus resulting in only two major diastereomers in a 4.7:1 ratio. [9,10]

Gratifyingly, 18 (Table 2, entry 6) proved a good substrate for tandem aziridination/cycloaddition to set the all-carbon quaternary stereocenter. While NaBH₃CN gave low conversion, LiBH₄ yielded **18a** in 10:1 d.r. When the three-step transformation was performed in one pot, residual rhodium catalyzed the reduction of the olefin with LiBH4 to furnish

Table 2: Scope of the [4+3] reaction in MeNO₂ using NaBH₃CN as reductant.

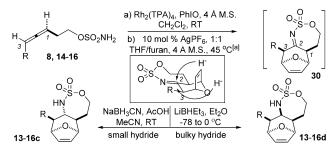
Entry	/ Product	Yield, d.r. (3 steps/one-pot)	Entry Product	Yield, d.r. (3 steps/one-pot)
1	H ₁₁ C ₅ , , , , , , , , , , , , , , , , , , ,	13a 41% 4.7:1	O S HN	18a 28% 10:1 ^[b]
2	O S - O HN CH _{3 M} O O O O O O O O O	14a 33% 6.7:1	7 HN MeO	O 19a 54% 53:4:4:1 ^[c]
3	Ph HN 2	15a 46% 4.3:1	8 HN Me	34%
4	BPSO HN	16a 52% 4.2:1	9 HN Me Me	62%
5	Me HN	17a 38% 4.7:1	10 O Me HN	41%

[a] Reaction conditions: a) 1 mol% Rh₂(TPA)₄, PhIO, 4 Å M.S., CH₂Cl₂, RT. b) 1:1 MeNO₂/furan, 4 Å M.S., 65 °C. c) NaBH₃CN, AcOH, MeCN, RT. [b] Treatment with NaBH₃CN, AcOH, MeCN, RT, followed by chromatography and reduction of the remaining imine with 5 equiv LiBH₄, THF, -78 °C to RT. [c] 500 psi H₂ 5% Pd/C, EtOAc; then LiBH₄, THF, -78°C to RT. [d] Purified by column chromatography at the imine stage, then reduced with 5 equiv LiBH₄, THF, -78 °C to RT. BPS = tertbutyldiphenylsilyl, M.S. = molecular sieves, TPA = triphenylacetic acid.


19a. Ultimately, we found olefin hydrogenation (entry 7; using Pd/C and H₂) prior to imine reduction gave reproducibly high yields of 19a with excellent d.r. values.[10] The chemistry could even distinguish between a Me and Et group at C3 of 20 to yield either 20 a (entry 8) or 21 a (entry 9, Pd/C and H₂ to reduce the alkene) with good d.r. values.^[10] Finally, the trisubstituted allene 22, containing an additional stereocenter \alpha to C3, gave 22a (entry 12) with a d.r. value comparable to that of 17 (entry 5).

Access to the 1,2-syn/2,3-anti diastereomer 13b requires the hydride to approach the 1,3-anti imine from the same face as any substituents at C3 of the allene precursor (Table 3). DIBAL-H and triisobutylaluminum gave 13b as the minor diastereomer, however, AlH3·Me2NEt furnished the desired stereochemical outcome. Presumably, AlH₃ binds to the oxygen atom of the [3.2.1] bicyclic ring to direct reduction to the hindered imine face, although coordination to the sulfamate O or to the imine is also possible. The challenge of overriding substrate control is reflected in lower d.r. value

Table 3: Scope of the [4+3] cycloaddition in $MeNO_2$ with $AIH_3 \cdot Me_2NEt$ as the reductant.


[a] a) 1 mol% Rh₂(TPA)₄, PhIO, 4 Å M.S., CH_2Cl_2 , RT. b) 1:1 MeNO₂/ furan, 4 Å M.S.,65 °C. c) AlH₃·Me₂NEt, PhCH₃, RT. [b] Yield determined by ¹H NMR spectroscopy.

and scope (entries 1–3) compared to the 1,2-anti/2,3-syn diastereomers. Alane tolerated neither a silicon-protected oxygen atom in **16** nor branching α to C3 in **17** as **16b** and **17b** were observed only in trace amounts (entries 4 and 5). Axial reduction was noted for trisubstituted allenes (entry 6), and despite the lower d.r. value, the use of AlH₃·Me₂NEt gave more reproducible access to **18a**, as compared to the use of LiBH₄ (Table 2, entry 6).

The next goal was to improve access to 1,3-syn imines of the form 12. Reaction of 8 with a rhodium catalyst, followed by [4+3] in THF at 50°C (Table 1, entry 2) resulted in only a 31% yield of 12. A variety of Lewis acids (see the Supporting Information) were tested, with 10 mol% of AgPF₆ providing optimal results. Adoption of these reaction conditions furnished the 1,3-syn imine 30 (Table 4) in a typical d.r. of greater than 10:1. To achieve tunable reduction of 30, we postulated that less bulky hydride sources (NaBH₃CN) should approach from the top face of **30** to favor the 1,2-anti/ 2,3-anti diastereomers. In contrast, a bulkier reductant, such as LiBHEt₃, would be expected to favor reduction from the face opposite the alkene bridge to give the all-syn stereotriads. The 1,3-syn imines were much easier to reduce than the corresponding 1,3-anti imines. For example, NaBH3CN reduced syn imines to the anti/anti products 13–16 c (entries 1, 3, 5, and 7) with good to excellent d.r. values. Switching the reductant to LiBHEt₃ delivered the syn/syn products 13-16d (entries 2, 4, 6, and 8), also in good d.r.

In our previous work, aziridination and subsequent functionalization of enantioenriched allenes gave excellent transfer of axial to point chirality. However, the intermediacy of an amidoallyl cation in the [4+3] precludes chirality transfer (see the Supporting Information). Nonetheless, the

Table 4: Scope of the [4+3] cycloaddition/reduction in THF.

Entry	Product		Yield, d.r. (3 steps)	Entry	Product		eld, d.r. steps)
1	0 0 S-0 HN	anti/anti 13c	41% 16:1	5 Ph	0 S-0 HN	anti/anti 15c	29% 3.2:1
2	H ₁₁ C ₅	syn/syn 13d	30% 10:1	6	kum O man	syn/syn 15 d	22% 7.5:1
3	O S HN Me, §	anti/anti 14c	26% 10:1 20%	7 BPSC	O S-O HN	anti/anti 16c	46% 18:1
4	ann O range	syn/syn 14d	15:1	8	in O man	syn/syn 16d	34% 11:1

[a] Reaction conditions: a) 1 mol % Rh₂(TPA)₄, PhIO, 4 Å M.S., CH₂Cl₂, RT. b) 10 mol % AgPF₆, 1:1 THF/furan, 4 Å M.S., 45 $^{\circ}$ C.

ability to racemize the axial chirality of the allene during the cycloaddition process could be used to an advantage to transfer chirality at the sp³ carbon atom of **17** to the three carbon atoms of the initial racemic allene to yield **17a** (Scheme 2) in moderate d.r. and excellent *ee* values.^[10,11]

Scheme 2. Enantioenriched cycloheptenes by [4+3] reactions.

The cycloheptenes from the tandem allene aziridination/ formal [4+3] are flexible scaffolds for further diversification, as **12** has four primary reactive functional handles which can be manipulated (Scheme 3). For example, reduction of **12**, activation of the sulfamate and nucleophilic attack with either thiophenol or diethyl malonate delivers **23** or **24**, respectively, in good yields. [11,12] Ring contraction to the pyrrolidine **25**[5c,6a] can be achieved or the ether bridge cleaved in an $S_N 2'$ fashion using tBuLi as a nucleophile to give a 1:1 mixture of the regioisomers **26** and **27**. [13] Dihydroxylation of the alkene yields **28** with high d.r. value, and this sequence sets seven contiguous stereocenters with high d.r. values over four steps from a simple allene. [10,14] Carbon nucleophiles also add to **12**, as evidenced by a Strecker reaction to afford **29**.

In conclusion, we have described the first examples of intermolecular [4+3] reactions occurring via 2-amidoallyl cations arising from direct allene aziridination. The ability to manipulate the stereochemistry of the intermediate amidoallyl cation leads to stereodivergent syntheses of all four possible diastereomeric cycloheptenes resulting from *endo* cyclization. The functional-group diversity of the products

$$\begin{array}{c} \text{NHBoc} \\ \text{H}_{11}\text{C}_5 \\ \text{NHBoc} \\ \text{NHBoc}$$

Scheme 3. Synthetic utility of cycloheptene products. a) NaBH₃CN, AcOH, MeCN; 41%, 16:1 d.r. from 8. b) Boc₂O, cat. DMAP, Et₃N, CH₂Cl₂, RT. c) Thiophenol, K₂CO₃, CH₃CN, RT; 75% from 13. d) Diethyl malonate, TBAB, Cs₂CO₃, MeCN, RT; 58% from 13. e) KOtBu, DMAP, CH2Cl2, 0°C; then Ac2O, RT; 96%. f: f) NaI, DMF, 60°C; then NaH, 40 to 60°C; 83%. g) tBuLi, THF, -40°C; 61% of a 1:1 mixture of regioisomers. h) 10 mol% OsO₄, NMO, acetone, H₂O, tBuOH, RT; 65%, > 20:1 d.r. i) nBu₄NCN, MeCN, RT; 80% yield from 12. Boc= tert-butoxycarbonyl, DMAP = 4-(N, N-dimethylamino) pyridine, DMF = N, N-dimethylformamide, NMO = N-methylmorpholine N-oxide, TBAB = tetra-n-butylammonium bromide.

enables access to an array of densely functionalized synthetic building blocks in a few simple steps. While the stereoablative nature of the chemistry prevents direct transfer of axial-topoint chirality, the presence of an additional stereocenter can be employed to yield enantioenriched aminated carbocycles. Future work is focused on expanding the scope of both allenes and coupling partners, as well as applying this methodology to the syntheses of both bioactive natural products and their aminated analogues.

Acknowledgments

J.M.S. thanks the NIH 1R01GM111412-01 and NSF-CAREER Award 1254397 for funding. The NMR facilities at UW-Madison are funded by NSF (CHE-9208463, CHE-9629688) and NIH (RR08389-01). The National Magnetic Resonance Facility at UW-Madison is supported by NIH (P41GM103399, S10RR08438, S10RR029220) and NSF (BIR-0214394). Lu Liu, Josh Taylor, and Nick Dolan of UW-Madison are thanked for starting materials and assistance with NOE studies. Adrian Amador is acknowledged for his assistance with SFC analyses.

Keywords: allenes · cycloaddition · heterocycles · rhodium · synthetic methods

How to cite: Angew. Chem. Int. Ed. 2016, 55, 13240-13243 Angew. Chem. 2016, 128, 13434-13437

[1] For selected reviews, see: a) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 45, 845; b) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438; c) H. Pellissier, Adv. Synth. Catal. 2011, 353, 189; d) D. A. Foley, A. R. Maguire, Tetrahedron 2010, 66, 1131.

- [2] For reviews dedicated to [4+3] cycloadditions, see: a) I. V. Hartung, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 2004, 43, 1934; Angew. Chem. 2004, 116, 1968; b) M. Harmata, Acc. Chem. Res. 2001, 34, 595; c) M. Harmata, Chem. Commun. 2010, 46, 8886; d) H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 1; Angew. Chem. 1984, 96, 29.
- [3] For selected reviews on heteroatom-substituted allyl cations in [4+3] cycloadditions, see: a) A. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812; b) M. Harmata, Chem. Commun. 2010, 46,
- [4] a) A. S. Kende, H. Huang, Tetrahedron Lett. 1997, 38, 3353; b) R. Schmid, H. Schmid, Helv. Chim. Acta 1974, 57, 1883; c) J. Robertson, G. C. Feast, L. V. White, V. A. Steadman, T. D. W. Claridge, Org. Biomol. Chem. 2010, 8, 3060; d) G. Prié, N. Prévost, H. Twin, S. A. Fernandes, J. F. Hayes, M. Shipman, Angew. Chem. Int. Ed. 2004, 43, 6517; Angew. Chem. 2004, 116, 6679.
- [5] For recent examples of reactions believed to occur through the intermediacy of 2-amidoallyl cations, see: a) A. H. Stoll, S. B. Blakey, Chem. Sci. 2011, 2, 112; b) A. H. Stoll, S. B. Blakey, J. Am. Chem. Soc. 2010, 132, 2108; c) A. R. Thornton, V. I. Martin, S. B. Blakey, J. Am. Chem. Soc. 2009, 131, 2434.
- [6] a) C. S. Adams, R. D. Grigg, J. M. Schomaker, Chem. Sci. 2014, 5, 3046; b) C. S. Adams, R. D. Grigg, J. M. Schomaker, Tetrahedron 2014, 70, 4128; c) C. S. Adams, L. A. Boralsky, I. A. Guzei, J. M. Schomaker, J. Am. Chem. Soc. 2012, 134, 10807.
- [7] For examples of generating 2-oxyallyl cations from allenes and their use in [4+3] cycloadditions, see: a) I. Fernández, J. L. Mascareñas, Org. Biomol. Chem. 2012, 10, 699; b) H. Xiong, R. P. Hsung, C. R. Berry, C. Rameshkumar, J. Am. Chem. Soc. 2001, 123, 7174; c) J. Huang, R. P. Hsung, J. Am. Chem. Soc. 2005, 127, 50; d) A. G. Lohse, R. P. Hsung, M. D. Leider, S. K. Ghosh, J. Org. Chem. 2011, 76, 3246.
- N. Shimizu, M. Tanaka, Y. Tsuno, J. Am. Chem. Soc. 1982, 104, 1330
- [9] For examples of stereocenters adjacent to either the diene or the 2-oxyallyl cation affecting the d.r. value of a [4+3] cycloaddition, see: a) R. J. Giguere, S. M. Tasseley, M. I. Tose, Tetrahedron Lett. 1990, 31, 4577; b) M. Lautens, R. Aspiotis, J. Colucci, J. Am. Chem. Soc. 1996, 118, 10930; c) W. K. Chung, S. K. Lam, B. Lo, L. L. Liu, W.-T. Wong, P. Chiu, J. Am. Chem. Soc. 2009, 131, 4556; d) S. Y. Cho, J. C. Lee, J. K. Cha, J. Org. Chem. 1999, 64, 3394; e) M. Harmata, P. Rashatasakhon, Org. Lett. 2000, 2, 2913; f) C. B. W. Stark, U. Eggert, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 1998, 37, 1266; Angew. Chem. 1998, 110, 1337; g) M. Harmata, D. E. Jones, M. Kahraman, U. Sharma, C. L. Barnes, Tetrahedron Lett. 1999, 40, 1831; h) A. M. Montaña, P. M. Grima, Tetrahedron Lett. 2002, 43, 2017.
- [10] The relative stereochemistry of product was determined by NOE
- [11] F. Duran, L. Leman, A. Ghini, G. Burton, P. Dauban, R. H. Dodd, Org. Lett. 2002, 4, 2481.
- [12] a) J. F. Bower, J. Švenda, A. J. Williams, J. P. H. Charmant, R. M. Lawrence, P. Szeto, T. Gallagher, Org. Lett. 2004, 6, 4727; b) T. A. Moss, B. Alonso, D. R. Fenwick, D. J. Dixon, Angew. Chem. Int. Ed. 2010, 49, 568; Angew. Chem. 2010, 122, 578.
- [13] M. Lautens, A. S. Abd-El-Aziz, A. Lough, J. Org. Chem. 1990, 55, 5305.
- [14] S. He, R. P. Hsung, W. R. Presser, Z.-X. Ma, B. J. Haugen, Org. Lett. 2014, 16, 2180.

Received: June 26, 2016

Published online: September 22, 2016

13437